

Mark Scheme (Results)

June 2024

Pearson Edexcel International Advanced Level In Physics (WPH14) Paper 01 Further Mechanics, Fields and Particles

Question Number	Answer	Mark
1	A is the correct answer because ampere is the only SI base unit given	1
	B is not correct because coulomb is not a base unit in SI	
	C is not correct because joule is not a base unit in SI	
	D is not correct because tesla is not a base unit in SI	
_		
2	D is the only correct answer because it shows the correct vector diagram	1
	A is not correct because this shows R – Q	
	B is not correct because this shows the correct magnitude in the opposite direction	
	C is not correct because this shows Q – R	
3	A is the only correct answer because the force is down the page using FLHR	1
3	A is the only correct answer occause the force is down the page using i Link	1
	B is not correct because it does not show the force down the page	
	C is not correct because it does not show the force down the page	
	D is not correct because it does not show the force down the page	
4	C is the only correct answer because using $F = BIl$ gives $I = F / Bl$	1
	A is not correct because it is not $I = F / Bl$	
	B is not correct because it is not $I = F / Bl$ D is not correct because it is not $I = F / Bl$	
	D is not correct occause it is not I I I bi	
5	A is the only correct answer because the particles are accelerated by electric	1
	fields across the gap and magnetic fields in the dees	
	B is not correct because the particles follow a semi-circular path of constant	
	radius followed by a straight portion across the gap and then a semi-circular path	
	of greater constant radius and so on	
	C is not correct because the electric field changes direction when the particles are	
	in the dees, not when the particles are in the gaps D is not correct because the magnetic field does not change direction	
6	D is the only correct answer because $t = \frac{-t}{\ln\left(\frac{V}{V_0}\right)}$	1
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	A is not correct because it is not $\frac{-t}{\ln\left(\frac{V}{V_0}\right)}$	
	B is not correct because it is not $\frac{-t}{\ln\left(\frac{V}{V_L}\right)}$	
	(*0)	
	C is not correct because it is not $\frac{-t}{\ln\left(\frac{V}{V_0}\right)}$	
7	B is the only correct answer because neutrons were not demonstrated to exist	1
'	until Chadwick's experiments	1
	A is not correct because this is a valid conclusion	
	C is not correct because this is a valid conclusion	
	D is not correct because this is a valid conclusion	

8	C is the only correct answer because the area under a force-time graph is the change in momentum A is not correct because the area under a force-time graph is not acceleration B is not correct because the area under a force-time graph is not force D is not correct because the area under a force-time graph is not distance	1
9	A is the only correct answer because the kinetic energy of the particle decreases by synchrotron radiation and, if not in a vacuum, ionisation and the path therefore decreases in radius because decreasing ke decreases momentum and r = p/BQ B is not correct because this would increase the radius C is not correct because this would increase the radius D is not correct because this would increase the radius	1
10	B is the only correct answer because $r = p/Bq = mv/Bq$ and mass is 4 times mass of a proton and charge is twice the charge of a proton while B and v remain the same, so the multiplying factor is $4/2 = 2$ and the initial radius is $2r$ A is not correct because the initial radius is $2r$ C is not correct because the initial radius is $2r$ D is not correct because the initial radius is $2r$	1

Question Number	Answer	Mark
11(a)	Top numbers: 4 (9) 12, 1 (1)	
	Bottom numbers 2 (4) 6, 0 (1)	2
	Example of formula	
	${}^{4}_{2}\alpha + {}^{9}_{4}\operatorname{Be} \rightarrow {}^{12}_{6}\operatorname{C} + {}^{1}_{0}\operatorname{n}$	
11(b)	Max 2 from	
	A neutron is not a <u>fundamental</u> particle (1)	
	(Because) it is made of <u>quarks</u> (1)	
	It is correct that a neutron is not made of an electron and a proton (1)	2
	Total for question 11	4

Question Number	Answer		Mark
12(a)	Complete circuit with ammeter and cell / battery in series with the capacitor and the resistor	(1)	1
12(b)(i)	Use of $I = I_0 / e$ to find time constant Or Intercept with t axis using initial tangent to find time constant	(1)	
	Use of time constant = RC	(1)	
	C = 0.018 (F) (2 s.f.)	(1)	
	OR Attempts a pair of readings of I and t from graph	(1)	
	Use of $I = I_0 e^{-t/RC}$ or Use of $\ln I = \ln I_0 - \frac{t}{RC}$	(1)	
	C = 0.018 (F) (2 s.f.)	(1)	3
	Example of calculation I = 2.4 mA / e = 0.9 mA Time constant = 90 s $C = 90 \text{ s} / 5100 \Omega = 0.0176 \text{ F}$		
12(b)(ii)	Use of $V = IR$ for initial p.d. using initial current	(1)	
	Use of $C = Q / V$ (ecf from (b)(i))	(1)	
	Q = 0.22 C	(1)	3
	Example of calculation $V = 0.0024 \text{ A} \times 5100 \Omega = 12.2 \text{ V}$ $Q = 1.8 \times 10^{-2} \text{ F} \times 12.2 \text{ V} = 0.22 \text{ C}$		
12(b)(iii)	Use of suitable equation, e.g. $W = \frac{1}{2} QV$ (ecf from (b)(i) and (b)(ii))	(1)	
	W = 1.3 J	(1)	2
	Example of calculation $W = \frac{1}{2} \times 0.22 \text{ C} \times 12.2 \text{ V}$ $W = 1.34 \text{ J}$		
	Total for question 12		9

Question Number	Answer		Mark
13(a)	Use of trigonometry suitable to determine sine or cosine of angle of disk with horizontal or vertical	(1)	
	Use of $W = mg$	(1)	
	Use of component of W with correct function and angle, eg $F = W \sin \theta$	(1)	
	F = 0.018 (N)	(1)	
	OR		
	Use of $E_{\text{grav}} = mgh$	(1)	
	State and justify use of conservation of energy	(1)	
	Use of work done = force × distance	(1)	
	F = 0.018 (N)	(1)	4
	Example of calculation $\sin \theta = 6.3 \text{ cm} / 30 \text{ cm} = 0.21$ $W = 0.0088 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 0.086 \text{ N}$ $F = 0.086 \text{ N} \times 0.21 = 0.018 \text{ N}$		
13(b)(i)	Use of $\omega = 2\pi / T$	(1)	
	$4.7 \text{ radian s}^{-1}$	(1)	2
	Example of calculation $\omega = 2\pi / (60 \text{ s} / 45) = 4.71 \text{ radian s}^{-1}$		
13(b)(ii)	Use of $F = m\omega^2 r$	(1)	
	Subtracts r from radius	(1)	
	4.8 cm from edge with comparison and conclusion (ecf from (b)(i))	(1)	
	OR STATE OF THE ST	45	
	Subtracts distance from edge from radius	1)	
	Use of $F = m\omega^2 r$ Or Use of $F = mv^2 / r$ and $v = r\omega$	(1)	
	F = 0.019 N with comparison and conclusion (ecf from (b)(i))	(1)	3
	Example of calculation $0.02 \text{ N} = 0.0088 \text{ kg} \times (4.71 \text{ radian s}^{-1})^2 \times r$ r = 0.102 m		
	0.15 m - 0.102 m = 4.8 cm which is just less than 5 cm		
	Total for question 13		9

Question Number	Answer		Mark		
14(a)	Baryon: 3 quarks (or 3 antiquarks)	(1)			
	Meson: a quark and an antiquark	(1)	2		
14(b)(i)	Identifies charges (of quark) (+)2e/3 and (charge of lepton) (+)1e	(1)			
	Identifies a quark with +2/3 charge (u,c,t)	(1)			
	Identifies an anti-lepton with charge +1 (e^+ , μ^+ , τ^+ - accept bar notation)	(1)			
	Baryon number = 1/3	(1)			
	Lepton number = -1	(1)	5		
	Example of calculation $+5e/3 = +2e/3 + 1e$				
14(b)(ii)	Use of eV to J conversion	(1)			
	Use of $\Delta E = c^2 \Delta m$	(1)			
	$m = 2.7 \times 10^{-24} \text{ (kg) (2 sf)}$				
	Example of calculation $(2 \times 6.8 \times 10^{12} \text{ eV} \times 1.6 \times 10^{-19} \text{ V}) \times 11 / 100 = 2.39 \times 10^{-7} \text{ J}$ $m = 2.39 \times 10^{-7} \text{ J} / (3.00 \times 10^8 \text{ m s}^{-1})^2 = 2.66 \times 10^{-24} \text{kg}$				
14(b)(iii)	Reasonable suggestion, such as: • Leptoquarks must have a mass greater than 2.7 × 10 ⁻²⁴ kg (ecf from (b)(ii)) • Its mass is too high • Energy needed is too high • The energy of the collision is too low	(1) (1) (1) (1)	1		
	Total for question 14		11		

Question Number	Answer		Mark
15(a)	No/minimal/negligible friction (between the surfaces)	(1)	
	So there are no resultant/net/unbalanced external forces acting on the pucks Or (so the pucks) can be treated as a closed system	(1)	2
15(b)(i)	Use of trigonometrical function for <i>x</i> component of A momentum after collision		
	Or Use of trigonometrical function for <i>y</i> component of A momentum after collision	(1)	
	Applies conservation of momentum	(1)	
	Applies trigonometry to calculate final angle for B	(1)	
	Angle between A and B = $91(^{\circ})$	(1)	
	Comparison between calculated angle and 90° including conclusion in words	(1)	5
	Example of calculation x component of A after = 0.039 kg m s ⁻¹ × cos 33° = 0.0327 kg m s ⁻¹ y component of A after = 0.039 kg m s ⁻¹ × sin 33° = 0.0212 kg m s ⁻¹ x component of B after = 0.046 kg m s ⁻¹ – 0.0327 kg m s ⁻¹ = 0.0133 kg m s ⁻¹ y component of B after = 0.0212 kg m s ⁻¹ tan θ = 0.0212 kg m s ⁻¹ ÷ 0.0133 kg m s ⁻¹ = 1.59 θ = 57.9° θ = 57.9° θ = 91° which is about 90°		5
15(b)(ii)	Applies trigonometry or Pythagoras appropriate to calculate magnitude of B momentum [mark may be awarded if calculated in (b)(i)]	(1)	
	Use of $E_k = \frac{p^2}{2m}$ Or Use of $E_k = \frac{1}{2} mv^2$ and $p = mv$	(1)	
	Correct calculation of one kinetic energy (ecf from (a))	(1)	
	Correct calculation of all kinetic energies (ecf from (a))	(1)	
	Comparison and conclusion consistent with calculated values of kinetic energy (ecf from (a))	(1)	5
	Example of calculation Momentum of B = y component of B / sin 58° = 0.0212 kg m s ⁻¹ / sin 58° = 0.025 kg m s ⁻¹ $E_{k} = \frac{(0.046 \text{ kg m s}^{-1})^{2}}{2 \times 0.11 \text{ kg}} = 9.62 \times 10^{-3} \text{ J (A before)}$ $E_{k} = \frac{(0.039 \text{ kg m s}^{-1})^{2}}{2 \times 0.11 \text{ kg}} = 6.91 \times 10^{-3} \text{ J (A after)}$ $E_{k} = \frac{(0.025 \text{ kg m s}^{-1})^{2}}{2 \times 0.11 \text{ kg}} = 2.84 \times 10^{-3} \text{ J (B after)}$ $6.91 \times 10^{-3} \text{ J} + 2.84 \times 10^{-3} \text{ J} = 9.75 \times 10^{-3} \text{ J} = \text{initial disc A kinetic energy, so it is elastic}$		
	Total for question 15		12

Question Number	Answer					Mark	
16(a)	Use of GeV t	to J conversio	n			(1)	
	Use of $E_k = \frac{1}{2}$	$\sqrt{2} mv^2$				(1)	
	$v = 1.5 \times 10^{1}$	1 m s ⁻¹ which	is greater than the	spee	d of light (so particle		
	speed relativi	,				(1)	3
		$\times 1.6 \times 10^{-19}$	$V) = 9.6 \times 10^{-9} \mathrm{J}$				
	$9.6 \times 10^{-9} \text{ J} =$		· ·		4 - 61: -1-41-: -1-: -		
			be travelling at rela		d of light, which is ic speeds		
*16(b)	answer with lin	nkages and ful r how the answ	ly-sustained reasoning ver is structured and	ng. Ma	erent and logically structurarks are awarded for indicast lines of reasoning. The end for indicative content.		
	IC points	IC mark	Max linkage ma	rk	Max final mark		
	6	4	2		6		
	5	3	2		5		
	4	3	1		4		
	3	2	1		3		
	2	2	0		2		
	0	0	0		0		
	of reasoning.			Nur stru	warded for structure and li nber of marks awarded fo cture of answer and sustain of reasoning	r	
	with linkages	vs a coherent a s and fully sust monstrated thr			2		
	Answer is pa	rtially structure lines of reason	ed with some		1		
		no linkages bet	ween points and is		0		
	IC2 The (a.c (electric Or The IC3 The a.c IC4 The len	ctrons are accept polarity change (a.c.) polarity (a.c.) polarity frequency is gth of the dri	anges (when the ele he same direction v y changes so it is a constant ft tubes increases (ectron when lway	field between the drift to ns are in the tubes) so the the particle is in the gas accelerating the particles the Linac) so the elect	he ps eles	
	Or The spend the IC5 The tub IC6 As the G	length of the he same time ses have const	in the tubes / gaps tant length at the er roach (but do not a	nd	he Linac) so the electro		6

16(c)	(High energy particles have) large momentum (1)	
	(So) the (de Broglie) wavelength is small Or to make (de Broglie) wavelength the size of proton (1)	
	(This produces) better resolution (for small objects) Or (This results in) more detailed observations Or allows the electrons to penetrate the protons (1)	3
	Total for question 16	12

Question Number	Answer		Mark
17(a)(i)	Central straight line equidistant from spacecraft and satellite and at least one of the diverging lines between spacecraft and the central line and at least one of the diverging lines between the central line and satellite At least one line looping spacecraft and one line looping satellite Line spacing between spacecraft and satellite smaller than line spacing to the left of spacecraft and to the right of satellite Example of diagram	(1) (1) (1)	3
17(a)(ii)	Straight line equidistant from spacecraft and satellite and labelled 0 V. Example of diagram	(1)	1
17(b)(i)	Use of $V = Q/4\pi\epsilon_0 r$ Or Use of $V = kQ/r$ Use of $W = QV$ Minimum energy = 1.7×10^{-15} (J) Example of calculation $V_{\text{spacecraft}}$ (= $V_{\text{satellite}}$) = 1.5×10^{-6} C / $4 \times \pi \times 8.85 \times 10^{-12}$ F m $^{-1} \times 2.5$ m = 5400 V $W = 2 \times 5400$ V $\times 1.6 \times 10^{-19}$ J = 1.7×10^{-15} J	(1) (1) (1)	3

17(b)(ii)	Use of $F = Q_1 Q_2 / 4\pi\epsilon_0 r^2$ Or Use of $F = k Q_1 Q_2 / r^2$ Use of suitable <i>suvat</i> equation(s), e.g. $s = ut + \frac{1}{2} at^2$ Correct value for s (270 km) or t (62.5 days), comparison and consistent conclusion $\frac{\text{Example of calculation}}{F = 1.5 \times 10^{-6} \text{ C} \times 1.5 \times 10^{-6} \text{ C} / 4 \times \pi \times 8.85 \times 10^{-12} \text{ F m}^{-1} \times (20 \text{ m})^2}$ $= 5.1 \times 10^{-5} \text{ N}$ $a = 5.1 \times 10^{-5} \text{ N} / 2500 \text{ kg} = 2.0 \times 10^{-8} \text{ m s}^{-2}$ $300 \ 000 \ \text{m} = \frac{1}{2} \times 2.0 \times 10^{-8} \text{ m s}^{-2} \times t^2$ $t = 5.4 \times 10^6 \text{ s}$ $t = 5.4 \times 10^6 \text{ s} / (24 \times 60 \times 60 \text{ s})$ $t = 62.5 \text{ days}$ is approximately 60 days, so the estimate is correct	(1) (1) (1)	4
17(c)	 A reasonable suggestion, such as Some of the electrons / beam misses Some of the electrons are deflected The spacecraft is already charged from use on a previous satellite The spacecraft emits further electrons in another direction as a fine control on the electrostatic force UV (from Sun) leads to photoelectric emission 	(1) (1) (1) (1) (1)	1
	Total for question 17		12

Question Number	Answer		Mark
18(a)	Current (in primary) produces magnetic field (around secondary coil) Or Current (in primary) produces magnetic field (in the core)	(1)	
	(When switch opened) the <u>current</u> changes so there is a change in (magnetic) flux <u>linkage</u> in the secondary coil need Or (When switch opened) the current changes so lines of flux cut the secondary coil	(1)	3
	An <u>e.m.f.</u> is <u>induced</u> (across the secondary coil)	(1)	3
18(b)	Use of $A = \pi r^2$	(1)	
	Applies knowledge of flux = flux density \times area	(1)	
	Use of $\varepsilon = dN\varphi / dt$	(1)	
	Use of $E = V/d$	(1)	
	$E = 1.4 \times 10^8 \mathrm{V} \;\mathrm{m}^{-1}$	(1)	5
18(c)	(By Lenz's law) the (direction of the) induced e.m.f. /current/field is such as to oppose the change causing it	(1)	
	E.m.f. / p.d. produced opposite to battery p.d. Or E.m.f. / p.d. produced reduces effective battery e.m.f. / p.d.	(1)	
	It opposes current (until rate of change of field is zero?) Or Reducing rate of increase of current	(1)	3
	Total for question 18		11